Technical data

Dimensions
- Length of a lock chamber: between 265 and 314 m
- Usable length of a lock chamber: between 230 and 275 m
- Width of a lock chamber: 24 m
- Average drop height: between 9 and 15 m

Filling volume
- Volume of a lock chamber: between 60,000 and 95,000 m³
- Time to fill a chamber: between 12 and 18 minutes
- Filling & draining channels: about 568 m

Lock gates
- Upstream lock gate: upper part 150 to 120 t, lower part 120 to 175 t
- Mitre gate: about 120 tons per leaf
- Vessel impact guard: A tight rope across the lock chambers to protect the gates from damage by vessels

Stop log
- Apparatus for tamping the lock chamber
- Mooring post: Post used to secure vessels to a mooring place

Locking
- Upstream: from tail water to headwater
- Downstream: from headwater to tail water

Outside wall
- Wall on the outer side of the lock chamber

Intermediate wall
- Wall separating the two lock chambers

Filling system
- Means for filling the lock chamber; the water is emptied from the headwater

Glossary

Headwater
- Area upstream from the lock

Tail water
- Area downstream from the lock

Upstream lock gate
- Gate construction at the upstream end of the lock; opening by lowering the upper part or rotating segment

Downstream lock head
- Gate construction at the downstream end of the lock

Mitre gate
- Double-leaf gate at the downstream end of the lock

Control tower
- Workplace of the lockmaster

Stop log
- Apparatus for tamping the lock chamber

Mooring post
- Post used to secure vessels to a mooring place

viadonau is operated by the Federal Ministry of Transport, Innovation and Technology At six locations and ten locks along the 378 river kilometres in Austria (Danube, Danube Canal and mouth of Traun, Enns and March), over 250 employees take care of the natural landscape and the Danube waterway. Our common goal is the careful and sustainable development of the Danube as a living and economic space. For each measure and for each service, we have all the essential environmental, safety and economic aspects in mind. Our engagement is always balanced, and it pays off in the long run – for the environment, for the people on the river and for Austria. Our staff at the locks works around the clock for our customers and lock over 100,000 vessels each year.

viadonau – Österreichische Wasserstraßen-Gesellschaft mbH
Donau-City-Strasse 1, 1220 Vienna, Austria
eoffice@viadonau.org, www.viadonau.org

Photos, layout and design: viadonau

Printing company: Druckerei Hans Jentzsch & Co GmbH
Climate neutral printing
DUTIES OF THE LOCK MASTERS

The smooth and service-oriented operation of the locks is an essential part of a well-functioning waterway infrastructure. The lock masters of viadonau are responsible for traffic control at the Danube locks. Over 50 employees at our locks – working around the clock in 12-hour shifts – perform the following tasks:

Control and monitoring of vessel traffic at locks
- Allocation of locking order
- Monitoring of lock traffic using radio telephone, radio-data transmission for vessel positions and radar
- Technical operation of lock systems (gates, filling / emptying, traffic-light signals)
- Control of vessel equipment for safety concerns, in particular for the transport of dangerous goods
- Measures in case of accidents in and at locks

“Around the clock” monitoring of the locks
- Fairway and water status in the lock area
- Taking measures in case of trouble
- Specific tasks in case of high water or ice formation

Contact point for skippers and administrative tasks
- Information & advice (e.g. current traffic situation on the waterway, water levels, critical fairway conditions)
- Maintenance of a lock management system

18 hydraulic power stations have been built over the entire length of the Danube. Nine of those are situated along the Austrian 350 km long stretch and operated by the power company Verbund AG. Verbund AG is also responsible for maintaining and repairing all of the locks located along the river.

The purpose of locks is primarily the handling of river traffic; however, they also help discharge high water and ice. They were built in the course of the construction of the power stations.

Locks consist of two chambers each 24 metres wide and with a usable length between 230 and 275 metres. Each lock chamber has the capacity to accommodate an entire pushed convoy consisting of a pusher vessel and four barges. Every year, approximately 10,000 to 14,000 vessels pass through each of these locks, with up to 45 vessels daily during peak season. Lockage takes about 30 minutes, requiring roughly between 60,000 and 95,000 m³ of water.

The locking principle

1. Entering the chamber
2. Upstream lock gate closes, draining to tail water
3. Leaving to tail water

A vessel impact guard protects the gates from damage caused by vessels.

The lockmaster’s station is usually situated at the downstream end of the locks, allowing both chambers to be monitored and controlled independently from each other.

If required, the lock chambers can be dammed up and drained for maintenance purposes by means of stop logs.